Signals for transverse-momentum-dependent distribution and fragmentation functions observed at the HERMES experiment

Markus Diefenthaler

on behalf of the collaboration

workshop "Partonic transverse momentum distributions" at EINN 2009, September 28th 2009 - p.1/32

The spin structure of the nucleon:

The HERMES legacy:

Longitudinal spin phenomena (1995–2000):

• angular momentum sum rule:

$$\frac{s_z^N}{\hbar} = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g$$

Transverse spin phenomena (2002–2005):

- investigation of σ_{UU} , σ_{UL} , σ_{UT} , σ_{LU}
- transversity measurements
- spin-orbit correlations via TMD measurements
 - \blacktriangleright Sivers function $f_{1T}^{\perp,q}$
 - \blacktriangleright Boer-Mulders function $h_1^{\perp,q}$
 - \blacktriangleright pretzelosity $h_{1T}^{\perp,q}$

The HERMES polarised scattering experiment:

- longitudinally polarised e^+ and e^- beam of HERA
- $\sqrt{s} \approx 7\,{\rm GeV}$

The HERMES polarised scattering experiment:

- (un)polarised **gas target** internal to the HERA storage ring
- background-free measurements from highly polarised nucleons

- very clean lepton-hadron separation and hadron identification
- well-suited for **measurements of azimuthal asymmetries**

The hunt for the chiral-odd transversity distribution:

• complete description of quark momentum and spin:

$$\Phi(x) = \frac{1}{2} \left\{ \boldsymbol{f_1^q}(\boldsymbol{x}) \boldsymbol{\mathbb{P}} + \lambda_N \boldsymbol{g_1^q}(\boldsymbol{x}) \gamma_5 \boldsymbol{\mathbb{P}} + \boldsymbol{h_1^q}(\boldsymbol{x}) \boldsymbol{\mathbb{P}} \gamma_5 \boldsymbol{\$}_{\perp} \right\}$$

extraction by Anselmino et al., Phys.Rev.D75:054032,2007:

The semi-inclusive production of $\pi^+\pi^-$ pairs:

$$egin{array}{rcl} P_h &\equiv& P_{\pi^+}+P_{\pi^-} \ R &\equiv& rac{P_{\pi^+}-P_{\pi^-}}{2} \ R_T &\equiv& R-(R\cdot\hat{P}_h)\hat{P}_h \end{array}$$

azimuthal angles ϕ_S and ϕ_{R_\perp} :

$$\phi_{S} \equiv \frac{(\boldsymbol{q} \times \boldsymbol{k}) \cdot \boldsymbol{S}_{T}}{|(\boldsymbol{q} \times \boldsymbol{k}) \cdot \boldsymbol{S}_{T}|} \arccos\left(\frac{(\boldsymbol{q} \times \boldsymbol{k}) \cdot (\boldsymbol{q} \times \boldsymbol{S}_{T})}{|(\boldsymbol{q} \times \boldsymbol{k})| |\boldsymbol{q} \times \boldsymbol{S}_{T}|}\right)$$
$$\phi_{\boldsymbol{R}_{\perp}} \equiv \frac{(\boldsymbol{q} \times \boldsymbol{k}) \cdot \boldsymbol{R}_{T}}{|(\boldsymbol{q} \times \boldsymbol{k}) \cdot \boldsymbol{R}_{T}|} \arccos\left(\frac{(\boldsymbol{q} \times \boldsymbol{k}) \cdot (\boldsymbol{q} \times \boldsymbol{R}_{T})}{|(\boldsymbol{q} \times \boldsymbol{k})| |\boldsymbol{q} \times \boldsymbol{R}_{T}|}\right)$$

SSA in semi-inclusive $\pi^+\pi^-$ production:

• Fourier and Legendre expansion:

$$A_{UT}^{\sin(\phi_{R\perp}+\phi_S)\sin\theta} \sim \frac{\sum_q e_q^2 h_1^q(x) H_{1,q}^{\triangleleft,sp}(z,M_{\pi\pi})}{\sum_q e_q^2 f_1^q(x) D_{1,q}(z,M_{\pi\pi})}$$

• focus on sp- and pp-interference ($M_{\pi\pi} < 1.5 \,\text{GeV}$): $\Rightarrow D_{1,q} \simeq D_{1,q} + D_{1,q}^{sp} \cos \theta + D_{1,q}^{pp} \frac{1}{4} (3 \cos^2 \theta - 1)$ $\Rightarrow H_{1,q}^{\triangleleft} \simeq H_{1,q}^{\triangleleft,sp} + H_{1,q}^{\triangleleft,pp} \cos \theta$

• symmetrisation around $\theta = \pi/2 \Rightarrow D_{1,q}^{sp}$ and $H_{1,q}^{\triangleleft,pp}$ drop out

Results on SSA in semi-inclusive $\pi^+\pi^-$ production:

• $A_{U\perp}^{\sin(\phi_{R\perp}+\phi_S)\sin\theta} = 0.018 \pm 0.005_{\text{stat}} \pm 0.002_{\text{b-scan}} + 0.004_{\text{acc}}$

- additional 8.1% scale uncertainty (target polarisation)
- first evidence for $H_{1,q}^{\triangleleft}$
- transversity can be studied in dihadron production

Results on SSA in semi-inclusive $\pi^+\pi^-$ production:

workshop "Partonic transverse momentum distributions" at EINN 2009, September 28th 2009 - p.8/32

Transversity measurement in single-hadron production:

• observation of **azimuthal asymmetry** $A_{UT}(\phi, \phi_{S})$:

- due to Collins mechanism ($(S_{\boldsymbol{q}} \cdot (\boldsymbol{p}_{\boldsymbol{q}} \times \boldsymbol{P}_{\boldsymbol{h}}))$)
- Fourier decomposition of $\sigma_{U\perp}$ including:

$$2\langle \sin(\phi + \phi_S) \rangle_{\text{UT}} = \frac{\sum_q e_q^2 h_1^q(x, p_T^2) \otimes_{\mathcal{W}} H_1^{\perp, q}(z, K_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, K_T^2)},$$

$$\sin(\phi - \phi_S), \sin(3\phi - \phi_S), \sin(\phi_S), \sin(2\phi - \phi_S), \sin(2\phi + \phi_S).$$

The Collins amplitudes for pions:

Results of the Collins amplitude: $h_{1}^{q}\left(x
ight)\otimes H_{1}^{\perp q}\left(z
ight)$ from 2002–2005 data:

- positive amplitudes for π^+
- large negative π⁻amplitudes unexpected

•
$$H_{1}^{\perp,\mathrm{unfav}}\left(z
ight)pprox-H_{1}^{\perp,\mathrm{fav}}\left(z
ight)$$

• isospin symmetry of π -mesons fulfilled

The kinematic dependence of the Collins amplitudes:

Evidence for naive-T-odd distribution functions:

- naive time reversal odd (naive-T-odd) functions
- involve interference of amplitudes with different helicities
 - suppressed in perturbative QCD
 - ➡ assigned to distribution and fragmentation functions
- associated with spin/orbit effects ($S \cdot (P_1 \times P_2)$)
- observation of the naive-T-odd **Sivers function** f_{1T}^{\perp}
- observation of the naive-T-odd **Boer-Mulders function** h_1^{\perp}

The Sivers mechanism:

- non-zero Sivers distribution f_{1T}^{\perp} involves non-zero Compton amplitude $N^{\uparrow}q^{\uparrow} \rightarrow N^{\Downarrow}q^{\uparrow}$
- orbital angular momentum of quarks: (M. Burkardt, (Phys.Rev.D66:114005,2002))

• SSA due to Sivers mechanism $(S_{q} \cdot (P \times p_{q}))$

The Sivers amplitudes for π -mesons:

Results for Sivers amplitude: $f_{1T}^{\perp q}\left(x
ight)\otimes D_{1}^{q}\left(z
ight).$

from 2002-2005 data:

- significantly positive for π^+ $\Rightarrow f_{1T}^{\perp,u} < 0, L_z^u > 0$
- significantly positive for π^0
- consistent with zero for $\pi^ \Rightarrow f_{1T}^{\perp,d} > 0$?
- increase with z for π^+ and π^0
- $P_{h\perp} > 0.4 \, \text{GeV}$: saturation for π^+
- $P_{h\perp} \rightarrow 0.0 \, \text{GeV}$: linear decrease
- isospin symmetry fulfilled

The Sivers amplitudes for charged K-mesons:

Results for Sivers amplitude: $f_{1T}^{\perp q}\left(x
ight)\otimes D_{1}^{q}\left(z
ight).$

from 2002-2005 data:

- significantly positive for K^+ $\Rightarrow f_{1T}^{\perp,u} < 0, L_z^u > 0$
- significantly positive for K^-
- increase with z
- $P_{h\perp} > 0.4 \, \text{GeV}$: saturation for K^+
- $P_{h\perp} \rightarrow 0.0 \, \text{GeV}$: linear decrease

Pion-difference Sivers amplitudes:

• suppress ρ^0 contribution by extraction of pion-difference SSA:

$$A_{UT}^{\pi^+ - \pi^-}(\phi, \phi_S) \equiv \frac{1}{|\boldsymbol{S}_T|} \frac{(\sigma_{U\uparrow}^{\pi^+} - \sigma_{U\uparrow}^{\pi^-}) - (\sigma_{U\downarrow}^{\pi^+} - \sigma_{U\downarrow}^{\pi^-})}{(\sigma_{U\uparrow}^{\pi^+} - \sigma_{U\uparrow}^{\pi^-}) + (\sigma_{U\downarrow}^{\pi^+} - \sigma_{U\downarrow}^{\pi^-})}$$

- significantly positive ⇒ $f_{1T}^{\perp,u} < 0$, $L_z^u > 0$
- $^{\circ}$ increase with z
- $^{\circ}$ saturation for $P_{h\perp} > 0.4 \, {\rm GeV}$
- $^{\circ}~$ linear decrease for $P_{h\perp} \rightarrow 0.0 \, {\rm GeV}$

• possible interpretation in terms of valence-quark distributions:

$$A_{\text{UT}}^{\pi^{+}-\pi^{-}} = \frac{f_{1T}^{\perp,d_{v}} - 4f_{1T}^{\perp,u_{v}}}{f_{1}^{d_{v}} - 4f_{1}^{u_{v}}}$$

The role of higher twist terms:

• Sivers amplitude:

$$2\left\langle \sin\left(\phi-\phi_{S}\right)\right\rangle_{\mathsf{UT}} \propto F_{UT,T}^{\sin\left(\phi-\phi_{S}\right)} + \epsilon F_{UT,L}^{\sin\left(\phi-\phi_{S}\right)}$$

•
$$F_{UT,T}^{\sin(\phi-\phi_S)} = \mathcal{C}\left[\frac{\hat{h}\cdot p_T}{M}f_{1T}^{\perp}D_1\right]$$

- $F_{UT,L}^{\sin(\phi-\phi_S)} = 0$ (leading twist and subleading twist accuracy)
 - $\circ \frac{q_T^2}{Q^2}$ -suppressed compared to $F_{UT,T}$
 - $^{\circ}\,$ can be generated by $\alpha_s\text{-corrections}$ at high transverse momentum

Examination of vector-meson contribution:

Examination of other $1/Q^2$ -suppressed contributions:

workshop "Partonic transverse momentum distributions" at EINN 2009, September 28th 2009 - p.19/32

Sivers amplitudes for K^+ and π^+ :

- *u*-quark dominance: $2\langle \sin(\phi \phi_S) \rangle_{UT}^{\pi^+} \sim 2 \langle \sin(\phi \phi_S) \rangle_{UT}^{K^+}$
- difference in K^+ and π^+ Sivers amplitudes:

- significant role of other quark flavours?
- higher twist effects in kaon-production?

Signals for unmeasured Boer-Mulders function h_1^{\perp} :

Azimuthal modulations of σ_{UU} :

- leading-twist $2\left<\cos\left(2\phi\right)\right>_{\sf UU}$
 - $^{\circ}$ sensitive to **Boer-Mulders function** ($h_1^{\perp} \otimes H_1^{\perp}$)
- subleading-twist $2 \langle \cos{(\phi)} \rangle_{UU}$
 - $^{\circ}$ sensitive to Cahn effect ($f_1 \otimes D_1$) and $h_1^{\perp} \otimes H_1^{\perp}$

Fully differential analysis $(x,y,z,P_{h\perp},\phi)$

➡ correction for finite acceptance, QED radiation, detector smearing

hydrogen (2000, 2006) and deuterium (2000, 2005) data

Results for $2\left<\cos\left(2\phi\right)\right>_{\rm UU}$:

- significantly positive for h^-
- slightly negative for h^+

•
$$h_1^{\perp,u} = h_1^{\perp,d}$$
 or $h_1^{\perp,u} = -h_1^{\perp,d}$

Clear signal for Boer-Mulders function?:

model by Gamberg, Goldstein, Schlegel, Phys.Rev.D77:094016,2007

Clear signal for Boer-Mulders function?:

model by Barone, Prokudin, Ma, Phys.Rev.D78:045022,2008

Results for $2 \langle \cos(\phi) \rangle_{\rm UU}$:

- almost zero for h⁻
- significantly negative for h^+

Results for $2 \left< \cos \left(\phi \right) \right>_{\rm UU}$:

prediction by Anselmino et al., Eur.Phys.J.A31:373-381,2007:

- quark-flavour dependent $\langle p_T \rangle$?
- significant Boer-Mulders contribution?

Towards the full cross-section measurement:

One-hadron production

$$\begin{aligned} d\sigma &= d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} \\ &+ S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} \\ &+ S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \\ &+ \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right) \\ \\ \\ \begin{array}{c} \sigma_{XY} \\ \end{array} \end{aligned}$$
Beam Target
$$+ \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\} \end{aligned}$$

Longitudinal single-spin asymmetries:

evidence for subleading twist SSA:

 $\langle \sin \phi \rangle_{\mathsf{UL}}^{q} = \langle \sin \phi \rangle_{\mathsf{UL}}^{l} + \sin \theta_{\gamma^{*}} \left(\langle \sin \phi + \phi_{S} \rangle_{\mathsf{UT}}^{l} + \langle \sin \phi - \phi_{S} \rangle_{\mathsf{UT}}^{l} \right)$

Longitudinal beam-spin asymmetry:

- good agreement with CLAS
- sensitive to E(x) (but difficult to separate)

The $\langle \sin (2\phi + \phi_S) \rangle_{U\perp}$ Fourier component:

The $\langle \sin(\phi_S) \rangle_{U\perp}$ Fourier component:

$$F_{UT}^{\sin\phi_S} = \frac{2M}{Q} \quad \mathcal{C} \quad \left\{ \begin{array}{c} \left(xf_T D_1 - \frac{M_h}{M} h_1 \frac{\tilde{H}}{z} \right) \\ \\ - \frac{\mathbf{k}_T \mathbf{p}_T}{2MM_h} \left[\left(xh_T H_1^{\perp} + \frac{M_h}{M} g_{1T} \frac{\tilde{G}^{\perp}}{z} \right) \\ \\ - \left(xh_T^{\perp} H_1^{\perp} - \frac{M_h}{M} f_{1T}^{\perp} \frac{\tilde{D}^{\perp}}{z} \right) \right] \right\}$$

• using relations between T-even functions:

$$xh_T = x\tilde{h}_T - h_1 + \frac{p_T^2}{2M^2}h_{1T}^{\perp} + \frac{m}{M}g_{1T}$$

$$xh_T^{\perp} = x\tilde{h}_T^{\perp} + h_1 + \frac{p_T^2}{2M^2}h_{1T}^{\perp}$$

• and the Wandzura-Wilczek approximation $\rightarrowtail F_{UT}^{\sin \phi_S} \propto F_{UT}^{\sin (\phi + \phi_S)}$

The $\langle \sin(\phi_S) \rangle_{U\perp}$ Fourier component:

workshop "Partonic transverse momentum distributions" at EINN 2009, September 28th 2009 - p.29/32

The $\langle \sin (2\phi - \phi_S) \rangle_{U\perp}$ Fourier component:

$$F_{UT}^{\sin(2\phi_{h}-\phi_{S})} = \frac{2M}{Q} C \left\{ \frac{2(\hat{h}p_{T})^{2} - p_{T}^{2}}{2M^{2}} \left(xf_{T}^{\perp}D_{1} - \frac{M_{h}}{M}h_{1T}^{\perp}\frac{\tilde{H}}{z} \right) - \frac{2(\hat{h}k_{T})(\hat{h}p_{T}) - k_{T}p_{T}}{2MM_{h}} \left[\left(xh_{T}H_{1}^{\perp} + \frac{M_{h}}{M}g_{1T}\frac{\tilde{G}^{\perp}}{z} \right) + \left(xh_{T}^{\perp}H_{1}^{\perp} - \frac{M_{h}}{M}f_{1T}^{\perp}\frac{\tilde{D}^{\perp}}{z} \right) \right] \right\}$$

- $F_{UT}^{\sin(\phi \pm \phi_S)}$ expected to scale as $P_{h\perp}$
- $F_{UT}^{\sin(2\phi-\phi_S)}$ expected to scale as $(P_{h\perp})^2$
 - suppressed w.r.t. Collins and Sivers amplitudes

The $\langle \sin (2\phi - \phi_S) \rangle_{U\perp}$ Fourier component:

workshop "Partonic transverse momentum distributions" at EINN 2009, September 28th 2009 - p.30/32

The $\langle \sin (3\phi - \phi_S) \rangle_{U\perp}$ Fourier component:

$$\begin{split} F_{UT}^{\sin(3\phi_h - \phi_S)} &= \\ \mathcal{C} \bigg[\frac{2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T \right) \left(\boldsymbol{p}_T \cdot \boldsymbol{k}_T \right) + \boldsymbol{p}_T^2 \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T \right) - 4\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T \right)^2 \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T \right)}{2M^2 M_h} h_{1T}^{\perp} H_1^{\perp} \bigg] \end{split}$$

- leading-twist $F_{UT}^{\sin(3\phi-\phi_S)}$ sensitive to pretzelosity h_{1T}^{\perp}
- $F_{UT}^{\sin(\phi \pm \phi_S)}$ expected to scale as $P_{h\perp}$
- $F_{UT}^{\sin(2\phi-\phi_S)}$ expected to scale as $(P_{h\perp})^2$
- F^{sin (3φ−φ_S)} expected to scale as (P_{h⊥})³
 ⇒ suppressed w.r.t. Collins and Sivers amplitudes

The $\langle \sin (3\phi - \phi_S) \rangle_{U\perp}$ Fourier component:

workshop "Partonic transverse momentum distributions" at EINN 2009, September 28th 2009 - p.31/32

In a nutshell:

- investigation of σ_{UU} , σ_{UL} , σ_{UT} , σ_{LU}
- significant $2\langle \cos(\phi) \rangle_{\rm UU}$ and $2\langle \cos(2\phi) \rangle_{\rm UU}$ amplitudes for hydrogen and deuterium target
 - sensitivity to Boer-Mulders function
- (most) precise data on a transversely polarised hydrogen target
- significant Collins amplitudes for π-mesons
 enables quantitative extraction of transversity distribution
- significant Sivers amplitudes for π⁺, π⁰, K⁺and K[−]
 ⇒ clear (and first) evidence of a naive-T-odd parton distribution
 - enables quantitative extraction of the Sivers function
- first evidence for a naive-T-odd dihadron fragmentation function
 provides alternative probe for transversity distribution